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This paper presents a benchmark error analysis of various approaches for treating multiple 
domain calculations within an anelastic finite difference model. One-way and two-way 
interactive nesting errors with and without temporal refinement are evaluated. The two-way 
interactive nesting approach is one where solutions between line and coarse grid domains are 
matched through the simple post insertion of data. On the other hand, the equations can be 
matched by using the pressure defect correction approach. It is shown that, for the present 
model, the two-way interactive nesting method gives identical results to multi-domain solu- 
tions using the pressure defect correction approach. The present results indicate that in this 
type of analastic framework, a priori matching of the equations is equivalent to the a posreriori 
matching of the solutions. This result is attributed to the inflexible nature of the Neumann 
boundary conditions on the fine mesh pressure which need to be specified from the coarse 
mesh. Since a large number of meterological models employ the hydrostatic assumption, it is 
of interest to know of nesting errors attributable to this approximation. The results presented 
indicate essentially equivalent error levels for both the hydrostatic and nonhydrostatic systems 
of equations for the present case of airflow over an isolated mountain. It is shown how nesting 
technology can be used in a virtual sense to reduce the central memory requirements for large 
array sized numerical simulations. Nesting can be used in this sense to decompose the maxi- 
mum memory working space required without affecting the results. SC. 1991 Academic Press, Inc. 

1. INTRODUCTION 

This paper presents benchmark error analyses associated with multi-domain 
numerical fluid dynamics simulations. The analyses are relevant to modeling 
applications over a wide range of low Mach number flows, despite there being an 
emphasis on atmospheric dynamics because this is the main application of the 
present model. Errors associated with one-way nesting, two-way, or interactive 
nesting, temporal refinement, and hydrostatic versus non-hydrostatic nesting are 
analyzed. Errors are determined within either the framework of two-dimensional 
bubble collapse experiments (a free convection problem) or stratified flow past a 
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three-dimensional mountain (a forced flow problem). These experiments are 
designed because they are associated with a sufficient ievel of predictability thereby 
allowing direct error assessment through an intercomparison of multi-domain 
simulations using high resolution single-domain benchmark simulations in a 
manner similar to [ l]. The results presented could be used to assess the relative 
performance of other models. 

.4 second-order finite difference non-hydrostatic anefastic model was developed 
by [2: 3] which was extended by Cl] to include interactive grid nesting with up 1.3 
three domains but without temporal refinement. The ane1asti.c approximation 
assumes that the density of the fluid is horizontally uniform except in the buoyancy 
term of the vertical equation of motion where its full temporal and spatial variation 
is considered. This approximation eliminates acoustic waves that require very small 
trme steps for explicit numerical integration [7]. A terrain following coordinate 
system was used by [2] in the numerically conservative manner of [4]. This model 
has been used for a wide range of low Mach number meteorological and fluid 
dynamical problems where grid sizes can range from fractions of a meter to tens of 
kilometers. More recently, the model has been extended to consider an arbitrary 
number of domains as well as temporal relinement aspects that will be discussed in 
this paper. A rather pleasant and well-known result of introducing temporal rehne. 
ment is that it not only results in computational efficiency but aHs0 In improved 
accuracy arising due to the increased consistently between the scales common to the 
interacting domains. 

A pressure defect correction, PDC, approach similar to [S] was temporarily 
added to the model as an alternative method of allowing the domains to interact. 
Instead of applying the PDC to the solution of an elliptic equation as in [IS]: herein 
it is applied to the time dependent Navier-Stokes equations. In this application of 
PDC we cannot improve the accuracy of the fine mesh Neumann boundary condi- 
Iions once they have been initially interpolated from the coarse mesh data. In the 
PDC approach, solutions to the momentum equations of the interacting don& 
are obtained such that it is redundant to consider a posterion’ insertion of 5ne mesh 
fluid velocity data into the coarse mesh as performed in the two-way interac:ive 
grid nesting approach. Matching of the momentum equations is achieved by adding 
a PDC term to the coarse mesh equations which is equal to the difference between 
the appropriately averaged fine mesh and the unmodified coarse mesh equations. 
To obtain this difference requires a first guess pressure solution for the interacting 
domains. The PDC approach is more costly but arguably more elegant and has. 
been suggested by some researchers to be more accurate. It is of interest, therefore. 
to evaluate differences between multi-domain solutions using the PDC approach 
(LZ ,ZW~DF~ matching of equations) as opposed to using the simpler and less expensive 
interactive grid nesting procedure (a posteriovi matching of solutions). 

An option that allows the model to be run hydrostatica~~~~ is used in the present 
paper to explore differences in the accuracy of nesting the faydrostatic and IICE- 
hydrostatic system of equations. A parametric case that is well into the hydrostatic 
regime is chosen because it should be physically well represented by either system 
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of equations. This paper does not attempt to determine the physical accuracy of the 
two systems of equations but instead to determine if there are any significant 
differences in multi-domain numerical errors attributable to the basic physical 
assumptions. Thus, hydrostatic nested simulations will be compared only with 
hydrostatic benchmark simulations and similarly for non-hydrostatic cases. Both 
systems of equations respond non-locally to local forcing that might intuitively 
seem to be a basic requirement to allow properly matched equations between 
domains. This non-local response is due to the infinite speed of sound resulting in a 
three-dimensional elliptic pressure equation in the non-hydrostatic anelastic system 
and the two-dimensional horizontal elliptic equation used to determine the surface 
pressure in the hydrostatic anelastic system. The pressure solution from these two 
equations converge in the limit of large horizontal to vertical scale aspect ratios. It 
is of interest to determine whether or not these differences at intermediate aspect 
ratios significantly affect the accuracy of the two-way interactive nesting. 

The present paper is primarily concerned with nesting errors associated with the 
resolved scales. The experiments are designed with enough explicit diffusion so that 
parasitic waves associated with the smallest scales of the line mesh domain do not 
appear to represent a significant problem. The phase and group velocity errors 
illustrated by [25] remain a research problem within the present model framework. 
In most practical problems parasitic scales are often dissipated by the application 
of high frequency filters or the use of artificial viscosity. 

It will be shown how one can take advantage of the nesting technology to limit 
central memory requirements. This can be achieved by a procedure that we define 
as virtual nesting, where the pressure equations for a number of equal resolution 
domains are solved as if there was only a single domain. In the manner described, 
one obtains identical results to those using a single large domain by subdividing the 
domain into a number of virtually nested domains. The memory saving is achieved by 
virtue of the local nature of the dimension reduction approach used to solve for the 
pressure [Z, 61. With a modest increase in data flow and accompanying computing 
cost overhead one can achieve a finite-difference model which is much more limited 
by central processing time than by the central memory availability of the computer. 

The paper is organized as follows. In Section 2 the analytical equations of the 
model will be briefly described first in Cartesian coordinates and then in the non- 
orthogonal terrain following coordinates. Next the numerical form of the equations 
will be presented in terms of both the non-hydrostatic and hydrostatic options. The 
nesting procedures and particularly the PDC approach are described as it relates to 
the present model. In Section 3 the results of the moist and dry bubble collapse 
experiments are presented and in Section 4 we present the results for the forced flow 
over topography. Section 5 describes the virtual nesting option and we conclude the 
paper in Section 6. 
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2. MODEL DESCRIPTION 

2.1. Anniq:tical Equations 

Usmg standard tensor notation the analytical form of the momentum equations 
is 

where ui (i= I, 2, 3) represents the velocity components in the .Y, J, and - 
orthogonal Cartesian coordinates, respectively. The density of the fluid is repre- 
sented by P(Z), the perturbation pressure by p”, the buoyancy by B, and subgrid 
scale mixing by the stress tensor, rii. (T, without subscripts, will also be used to 
denote the time increment index.) The constants g and C are the gravitational 
acceleration and the adiabatic speed of sound. In the anelastic framework acoustic 
waves are eliminated, [7], by putting the local time derivative of the fluid 
to zero resulting in the mass conservation equation 

The buoyancy, B, in ( 1) couples the dynamics and the thermodynamics. In this 
model, B consists of terms representing the buoyancy due to potential temperature. 
the buoyant effects of the water vapour in the air and the drag due to cloud water, 
rainwater, and cloud ice. B will be described in more detail in Section 2.2. The 
various thermodynamic field variables of the model are treated with the conserva- 
tion equation 

where the arbitrary scalar field variable C$ may represent the total potential tem- 
perature, 8, the water vapour mixing ratio of the air, qL,, or one of the condensed 
water substance mixing ratios such as cloud water, qC, rainwater [S]; or c1ou 
ice [9]. S, represents the various source/sink terms due to latent heat release or 
conversion terms between various cloud variables. &I,$ is the eddy mixing coefficient 
for the thermodynamic variables which treats subgrid scale mixing in the simple 
first-order sense. The subgrid scale mixing for the momentum is also treated using 
a first-order closure 

where 0, is the deformation tensor and K,, is the eddy mixing coefficient for the 
momentum. K,,, is determined using the closure theory of [IO, 1 I j. 

The model is transformed from the orthogonal Cartesian system of equations to 
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a non-orthogonal terrain following system. This transformation allows the model to 
be applied to problems involving flow over topography. The vertical coordinate is 
transformed from z to q, where 

and 

iy = (2 - h)/,/E is) 

&= 1 -h/H (6) 
is the Jacobian of the transformation. H is the height of the outermost model 
domain and h = h(x, y) is the height of the topography. 4 = 0 represents the 
material surface in the transformed equations at which the nonlinear lower velocity 
boundary condition reduces to w = 0, where o is the velocity component normal to 
q = constant surfaces. One can derive the transformed equations using any consis- 
tent mathematical procedure such as the chain rule or vector tensor analysis. The 
chain rule is applied here in the usual manner where horizontal derivatives trans- 
form as 

where the partial derivatives 

(7) 

(10) 

are represented using tensor notation. 
Using (5) through (10) it is easy to demonstrate that a conservation equation of 

the form 

in the Cartesian system transforms to 

in the terrain following system, where 

w = (tv + J’FG13u + ,@G”tl)/& 
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is the velocity normal to q = constant surfaces. For further details on the mode! the 
interested reader is referred to [I, 2, 3, 121. 

2.2. Numericnl Sl.stem of Equations 

The fu31 three-dimensional system of equations will be shown in their numerically 
approximated form using Schuman type numerical operators,’ [24]. In the 
following equations p represents \/?? times the p(z) shown previously. The three 
momentum equations for the Cartesian components of velocity transform from 
(I) to: 

p(h is a flag which is set equal to one when the system is non-hydrostatic and to zero 
when its is hydrostatic. B = Of’/8 + Eql: - qC - q,. is the buoyancy. The double-primed 
terms in B represent the deviations of the field from the horizontally uniform 
environment. In this model, [l], 6 is decomposed as 4 = 8(z) + G’(z) + t?“!..?. ;I. 
where 0 represents an environment having a constant stabihty and B + 8’ represent 
the fuli hydrostatically balanced environment with arbitrary stabilhty. The zj, terms 
represent the numerically approximated subgrid scale mixing terms as in [a]. The 
mass continuity equation transforms from (2) to 

‘Schtiman type operators have been used throughout the paper to represent the numericai equations. 
For an arbitrary dependent variable $ and independent variable 5 we have 

Where < could be any of s, J, q, or 7 
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and the o relation is approximated as 

The remaining conservation equations transform to the form already shown in 
[12] and are solved using the second-order in time and space scheme, [13-151, 
and will not be shown. The numerical scheme shown in (14)-( 17) is second order 
[16, 171. 

Two approaches are used in solving (14) through (18). The first approach is to 
assume non-hydrostatic pressure balances by putting 11~ = 1 in (16). We then derive 
an equation for 6,,(pVo) by appropriately combining (14)-(16) and (18). We 
combine this o tendency equation with (14) and (15) and take their respective 
derivatives to form a prognostic divergence equation. Since (17) constrains all 
divergences to be zero this prognostic divergence equation reduces to a diagonostic 
elliptic equation for the pressure. In the most general case the numerical form of 
this pressure equation has a 25 point stencil. We refer the interested reader to [2] 
for the method used to solve for p in its nonhydrostatic form. In deriving the 
G,,(iFo) equation one obtains terms commonly referred to as the Christoffel terms 
which involve derivatives of h times quadratic combinations of the velocity com- 
ponents. By numerically approximating the Cartesian velocity component equa- 
tions prior to forming the 6,,(pqu) equation we obtain a numerically consistent 
form to the Christoffel terms such that momentum and kinetic energy are conserved 
to order At2 with respect to the nonlinear advection terms. This approach is similar 
to that of [4] and is that used by [2]. If one attempts to apply the numerical 
approximations to the w tendency equation, as in [lS], then identical solutions and 
conservation properties can be obtained only if one were to use the equivalent 
numerical form for the Christoffel and remaining advection terms. This is extremely 
tedious and it is more convenient to transform the numerical equations to form the 
o tendency equation. The transformation has in no way changed the physical 
variables that we wish to conserve. It is for this reason that we apply the numerical 
approximations at the particular stage shown. 

The second approach to solving (14) though (18) is to assume hydrostatic 
pressure balances by putting ph = 0 in (16). A solution for p for this model which 
forces mass conservation is described in Appendix A. This approach is similar to 
that used by [19] in a sea breeze model and subsequently by [20] in a frontal scale 
model. The z4 and u fields are stepped forward in time using (14) and (15) after 
solving for p and Ed is then stepped forward using (17). The modifications required 
to convert a non-hydrostatic model to a hydrostatic one are relatively minor. One 
of the reasons for introducing such an option in the present model is to assess 
numerical and physical errors associated with the commonly used hydrostatic 
assumption. It is much easier to assess such differences within one model than 
between two different models where there are typically further discretization 
differences. 
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2.3. Multiple Domain Procedures 

There are many problems in fluid dynamics in which higher spatial resoiution 1s 
required in only a limited portion of the computational domain. Grid nesting 
allows one to focus on such desired regions of the domain and obtain higher spatial 
resolution with computational efficiency. Figure I shows a schematic of the grid 
structure of two models for a two-dimensional cross section in x and q. A staggered 
grid system 1121 is employed where the density and other thermodynamic variables 
are defined in the center of the grid boxes, the velocities at the surfaces of the grid 
boxes and the stress terms at the corner of the grid boxes. 

The inner domains are always located such that each boundary of the fine mesh 
domain collocates with a grid surface of the interacting coarse mesh. Grid surfaces 
are defined as the planes at which velocity components, directed normal to the 
plane, are located. For example, the two x -j’ planes of a grid are located at 10 
positions. Furthermore, all coarse mesh grid surfaces within a fine mesh domain 
must collocate with tine mesh grid surfaces, i.e., the grid ratios between interacting 
domains must be integers. The coarse meshes are first stepped forward in time. 
Conditions at the domain boundaries of the respective interacting inner domains 
are interpolated from the coarse mesh after which the fine mesh can be stepped 
forward in time. After the fine mesh domain is integrated in time up to the same 
point as the coarse mesh then tine mesh data is inserted into the coarse mes 
procedure of interpolating boundary data from a coarse mesh is termed OW-V,~J~ 
i?ZleracFiOn if no further feedback of information from the fine to coarse mesh is 
considered. If there is a feedback of fine mesh data then this procedure is terrried 
tlr’o-way internctim. The interpolation formulae and averaging operators used are 

FIG. 1. Schematic of staggered grid structure for two models with a 2. I nesting ratlo Thz circ!es 
mark coarse mesh positions of thermodynamic variables whereas the crosses mark the velocity compo- 
nent positions. Dots mark the firie mesh grid centered variables and the arrow marks the -velocity 
component positions. 
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those described in [l]. The interpolation formulae are typically quadratic in each 
spatial direction. The one exception is for the interpolation of velocity component 
data in the logical direction of that component. In this case the formulae are cubic 
so that divergence constraint is maintained during interpolation. The interpolation 
and averaging formulae are reversible such that when the interpolation formulae 
are used to spawn a new line mesh data set and this line mesh data set is then 
averaged back onto the coarse mesh then the data on the coarse mesh remains 
unchanged. The starting point for all the error analyses in this paper will be the 
assessment of the errors of the one-way and two-way interacting schemes presented 
in [l]. These two schemes use the same time steps for all domains and will be 
termed l-Way CF and 2-Way CF. 

Another method of allowing the domains to interact is to apply a pressure defect 
correction (PDC], prior to updating the coarse mesh velocities. Consider two 
interacting domains to have the equations 

for the fine mesh and 
~X#rJr + I 

23t+FX=PFX 

(19) 

(20) 

for the coarse mesh domain where (19) and (20) represent the x-direction horizon- 
tal momentum equations. The expressions pfx and PFX represent the pressure 
gradient forces whereas JX and FX represent the explicit terms such as advection, 
diffusion, and Coriolis. A similar procedure applies for the y- and z-direction 
momentum equations. The averaging operator for p”u is defined as 

where (p”u) is the horizontal velocity component that the line mesh domain would 
insert into the common coarse mesh region. RY and RZ are the grid ratios in the 
J and z (or 11) directions. We define 

p(-Jrt1= (p.YU)t+l (22) 

which can be achieved by adjusting FX as 

FX”= (ji> + PFX’-‘- (pji). (23) 

which requires that a first guess pressure solution be obtained for the coarse and 
line mesh domains and v is an interaction index. 

On second and subsequent solutions for the pressure of the coarse mesh domain 
we substitute the pressure defect corrected value of FX’ from (23) into (20). Once 
the pressure is calculated in this manner it is redundant to consider inserting tine 
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mesh data into the coarse mesh. To verify that the PDC option was correct!y 
applied, we performed redundancy tests which successfuully showed (to roundoff 
precision) that the integration was left unaffected. This option was applied only for 
equal time steps and will be termed 2- Waj, PDC. 

A fourth modification to the nesting procedure was to consider mixing of pertur- 
bation data for the thermodynamic variables. In [I] they mixed ((0’ + 6”iiB). 
Since environmental components such as 0’(z) and q,(z) will have slight differences 
between domains due to resolution effects and since the buoyancy that produces 
vorticity is only associated with the double primed terms. it seems reasonable to 
expect improved accuracy by mixing only the double primed portion of the 
thermodynamic variables. The choice of variable to mix between domains was 
taken (6”/0) and (II::) In the case of moist calculations we also mix ( qC). ResuEts 
of this option will be termed PM which stands for perturbation mixing, 

A fifth modification to the nesting procedure was to introduce temporal refiae- 
ment. This procedure involves either linearly or quadratically interpoiating 
data from the coarse mesh to the fine. The results using this option will be termed 
either TF(,L) for temporal refinement using linear interpolation or W(Q) for the 
quadratic interpolation case. 

We will now describe two sets of experiments designed to determine the re4ative 
accuracy associated with the above options. 

3. BIJBBLE COLLAPSE EXPERIMENTS 

3.1. Description of’ the Experiments 

A uniformly mixed region (bubble) was used by [al, 22, 11 in a hnearly stratified 
fluid for assessing the preformance of numerical methods. In the present case, 
the initial environmental conditions for the two-dimensional bubble collapse 
experiments were defined with zero wind over a domain of 28 by 2X km in the ~1 and 
z directions, respectively. The surface temperature and pressure were taken. a.s 
3OO’K and 1000 hPa. respectively. From z = 0 to 10 km, the environment was 
isothermal with S = din 8:d.z = g/c, TsA, where T,, and C, are the surface tem- 
perature and specific heat of air at constant pressure. From z = 10 to 1X km, a 
constant environmental stability of S = lO--‘rn - i was assumed. From z = 18 to 
28 km the environment was again isothermal with a temperature of 243°K~ Apart 
from q,? this environmental structure completely defines the environmental portions. 
of the thermodynamic variables. A region of near neutral stability was estabhshed 
by letting 

$(.?9r=O)=i[exp(S(;,--z))-l] 

x [tanh((,--r,)/il)-tanh((----12);1)1 

x [tanh((~-~~,),i/l)-tanh((i-~~~)!’~)i~ i24; 
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where 2=300m, S=lO-‘m-l, I:,==r=12km, y2=ZZ=16km, and z,= 
(z1 +z;)/2. 

For the moist experiments, the relative humidity was specified at 50% 
throughout the experimental domain whereas for the dry experiments it was set to 
zero. The upper and lower surfaces at z = 0 and 28 km are taken as non-conducting, 
free-slip, rigid, and flat surfaces. The lateral boundary conditions at y = 0 and 
28 km are taken as cyclic. A constant eddy mixing coefficient of K, = Kh = 60 m’/s 
for the moist experiments and lOm*/s for the dry experiments was assumed 
throughout the domain. 

These initial conditions represent a diffusion chamber. As the region of neutral 
stability collapses the lower regions cool and upper regions heat. Figure 2 shows the 

i 12.0 --I--- 
12.0 12.6 13.6 14.4 15.2 16.0 

X [km] 

FIG. 2. B and qc are shown at t = 14 min for a moist bubble collapse experiment: (a) shows the outer 
domain with frame markings denoting the inner domain region. (b) shows the inner domain which is 
also the initial well-mixed region. Contour intervals for q, and 0 are 0.1 g kg-’ and 10°K in (a) and 
0.1 and 5 in (b). The dashed contour represents the cloud outline where q, = O.lg kg-‘. 
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experimental framework for a moist nested simulation. Figure 2a shows the CN&X 
domain with an outline of the inner domain and Fig. 2b shows a rnagni~~~tie~ of 
only the inner domain region. Contours of 6 and qc are skown with the clot~d 
centered in J and located just below the z = 14. km position at I = 14 min. The 
symmetry is maintained about y= 14 km and there are no indictions of l”me scale 
structures. In the case of no moisture there are only gravity waves generated which 
are subsequently dissipated by the diffusion coefficient. For the moist case Ihe 
cooling in the lower region results in the development of a cloud. The reason far 
choosing suck a large K, and Kh in the moist case was to prevent the cloud from 
developing any boundary instabilities which quickly destroy predictability. “Slbch 
instabilities prevent us from being able to discern solution differences due to either 
model inaccuracies from those due to the nonlinearity of the basic dynamics. kov+:er 
values of eddy mixing coefficients were tested and found unacceptable for the 
purposes of the present experiments. 

The solutions to the govering equations are determined by integrating 2 single 
domain experiment for a period of 20 min. This benchmark model uses 280 by 2W 
grid points with 100 m resolution and 3 s time steps. It should be clarified tka1 we 
want these benchmark solutions only to be sufficiently accurate to enable detectIon 
of significant level of errors when the resolution outside the near -neutral stability; 
region is reduced. The assumption is that by minimizing these errors (or more 
precisely differences) introduced through nesting, we are optimizing tke nesting 
procedure. A second series of solutions is obtained using two nested domains. Tk: 
outer domain uses 140 by 140 grid points of 200 m and exactly covers the domain 
of tke benchmark experiment. A second domain of 4 by 4 km is centered inside the 
outer domain and exactly overlays the region of near neutral stability. Tke inner 
domain uses 40 by 40 grid points of 100 m resolution. The nested simulations use 
3 s time steps for both domains except in the case of temporal refinement wkere a 
6 s time step is used for the outer domain. The errors are defined as the differences 
between tke inner domain solutions using nesting and the benchmark experimem 
over the identical region. 

An error diagnostic employed is the relative kinetic energy error defined as 

E 
ke (25) 

where dtl and Aw represent the differences between the benchmark solutions and 
the solutions obtained using nesting. Only the benchmark solutions are used in 
the denominator of (25). Another error diagnostic is the relative buoyancy error 
defined as 

where again AB represents the differences between the benchmark and nesting solu- 
tions. It should be noted that E*(t) is biased by the fact that B(t = 0) f 0. 
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3.2. Moist Results 

Figure 3 shows the Eke(t) and EB(t) errors versus t for six different nested 
calculations. The ~-W’UJ~ results are divided by 10 and shifted for purposes of con- 
venience of display. As noted in the earlier work of [23, l] and others the I- Way 
errors are considerably larger than the 2-Way interactive case. Towards the end of 
the exprtiment they are as much as 40 times larger than the most inaccurate 2-Wa~ 
case. 

The CF and PDC (pressure defect correction) simulations, using equal At 
between domains, gave nearly identical errors. The PDC results were insensitive to 
the number of iterations beyond the first. These findings are siginifant in that they 
demonstrate that it is not important whether or not one matches the momentum 
equations a priori through the pressure solutions using PDC or a posteriori using 

1.0 I , I , I , I , I , I , I , I 

(I-Way)/ 10.0 + 0.15 \ 

0.6 

z z 
E E 

2-Way [CF and PDC] 

i 0.6 tl \ 2-Way [PM], 

& m 0.4 
w 

0.2 

0 
1.0, , , , , I , I , I , I , I , 1 , I , I , 1.0, , , , , I , I , I , I , I , 1 , I , I , 

I I I I I I I I 
2 4 6 6 IO I2 IO I2 14 14 I6 I6 I8 20 I8 20 

TIME (min) 

FIG. 3. Moist bubble collapse experiment error plots: (a) shows the kinetic energy errors and (b) the 
buoyancy errors versus time. The heavy solid line in each of these plots represents a normalized plot of 
the total quadratic field taken from the benchmark experiment. 
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post insertion of fine mesh data into the coarse mesh. The PDC is more expensive 
as well as more complicated. These results support the concept that typical Inter- 
active nesting used in meterology is a mathematically soun 

The addition of perturbation mixing to the CF approach results in a slight reduc- 
tion of errors The addition of temporal refinement significantly reduces the errors 
from those using equal At. The reason for this improvement is probably due to the 
fact that in terms of Courant numbers both domains now have similar errors at the 
same scale of motion. This increased consistency should tend to reduce the amount 
of reflection at domain interfaces. Quadratic temporal refinement gives a very shgh-; 
improvement in accuracy for this experiment. 

Figure 4 shows ;z’ and d~r: errors at I = 10 min. This is the time of maximum 
absolute errors for these experiments Plate 4a shows the full II’ with a contour 
interval of 0.5 ms -‘, whereas plates 4b, c, and d show AH, errors for the l-Way.. 
Z-Way [CF], and Z-Way [TR(Q), PM], respectively. The scale of the errors is 

160 

X (km) 

FEG. 4. IV field plots for the moist bubble collapse experiments at I = 10 min: (a) shows the fuli !I’ 
field with a contour interval of 0.5 m s- ‘. (b), (cj, and (d) shou the Jw errors for the l-“Ji/aj-. Z-WaJ 
CF, and Z-Way IX(Q) cases, respectively. The contour interval is 0.03125 m s-l ir these error plots. 
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comparible to that of the field itself. There is a noticeable difference in structure and 
amplitude between the I-Way and most inaccurate 2-Way errors, whereas there is 
mainly a difference in amplitude between the most inaccurate and most accurate 
2-Way errors. 

3.3. Dry Results 

Figure 5 shows Eke and E, versus t for the dry bubble collapse experiments. The 
character of the errors is similar to those in the moist bubble experiment. The 
absolute magnitude of the errors is about 6 times larger for the dry experiments 
than for the moist. These differences are most likely due to the smaller eddy mixing 
coefftcient of 10 m2ss1 in the dry as opposed to the 60 m2s -I in the moist. The CF 
and PDC gave exactly the same results where one extra iteration through the 
coarse mesh pressure solver was used in the pressure defect correction approach. 

~%mx 
I-Way 

\ I 

OJ' 
0 2 4 6 8 IO 12 14 16 18 20 

TIME (min) 

FG. 5. Same as in Fig. 3 except for the dry bubble collapse experiment. 
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The temporal refinement again resulted in a systematic reduction of errors although 
there was an insignificant difference between linear and quadratic interpoiation in 
time. 

4. STRATIFIED FLOW PAST A THREE-DIMENSIONAL MOUNTAIN 

4.1. Description of the E.yperiments 

This experiment consists of a uniform flow having constant stability. 
S = lo-’ m- ’ and mean wind speeds of 10 ms -r and 1 ms- i in the east-west and 
north-south directions flowing over an isolated mountain. The surface temperature 
and pressure are 300°K and 100 hPa, respectively. The mountain height, h, is taken 
as 

h(x, y) = h,/( 1+ (x’,‘a)’ + ( y’j%)‘) (27) 

where x’ and 4” are distances relative to the domain center. The mountain is taken 
as an. ellipse with a = 25 km and b = 30 km and h, = 1.5 km. The Froude number. 
Fr = U/(Nh,), is about ; for this case, where N is the Brunt-Vaisala frequency. The 
outermost domain is chosen as 600 by 600 km in the horizontal and 30 km in the 
vertical. The horizontal boundary conditions are cyclic and a Rayleigh friction and 
Newtonian cooling absorber is used in the top 12 km of the domain. The structure 
of the absorber is chosen such that l/r is linear and varies from zero at z = 18 km 
to lid000 s at the domain top. As in [l] there is an applied smoothing fit at 
2 = 18 km to this linear structure. Coriolis, surface drag, surface sensible heat, and 
moisture flux effects are all set to zero in these experiments. This experiment is 
designed so that the flow can be accurately treated using either the hydrostatic .cr 
non-hydrostatically approximated equations. The reason for chasing a flow that 
impinges on the mountain at an angle about 84” to the main axis is to produce 
enough asymmetry in the solution to affect nesting errors associated with matching 
domain stresses. 

The benchmark model uses 120 by 120 by 60 grid points in the X-, J’-, and 
z-directions. The grid sizes are taken as 5 km in the horizontal and 0.5 km in the 
vertical. For the two-domain model simulation the outer domain uses half the 
resolution of the benchmark model. The inner model is centered with respect TV the 
outer and covers a horizontal domain of 200 by 200 km and a vertical domain ef 
15 km. Both the inner and outer domains have their lowest q level on the ground. 

The simulations are initialized using a potential flow deviation from the initial t: 
and V profiles such that mass continuity is satisfied. The procedure assumes tha.t 
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where pji, pjj~‘, and pfo are the logical equivalents to the pressure gradient terms 
in (14), (15), and the w prognostic equation derived by combining (14 j to (16) with 
(18). The divergence of (28) consistent with (17) requires 

UPJ+N + ~,(pf~hw + qpf~km = 6xwu + ~,wu + qiw. (29) 

The existing three-dimensional non-hydrostatic pressure solver is adapted to solve 
(29). After ensuring a high degree of convergence, the solutions to (28) and (29) are 
used to initialize the simulations. The initial buoyancy is taken as zero. In order to 
avoid differences in results caused by solving (28) and (29) at different resolutions, 
the simulations start off using three domains. The first domain is taken as the 
coarse resolution outer domain having 10 km resolution in the horizontal. The 
second domain is taken as the benchmark model domain which interacts with the 
first domain. The third domain is the 5 km resolution inner domain which interacts 
with the second domain. This setup is initialized and integrated to t = 10 min using 
a 50 s time step. At t = 10 min all errors are identically zero. For t > 10 min the 

6 
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d) 120 min 

0 loo 200 300 400 500 600 

FIG. 6. Field plots of w from the non-hydrostatic benchmark model at t = 30, 60, 90, and 120 min., 
4,x = 4~ = 5 km, and A-7 = 0.5 km. The contour interval is 0.1 m SC’. 



benchmark and two-domain experiments are treated in a totally independent man- 
ner. The error diagnostics (25) and (26) are again used in these experiments except 
that the full three-dimensional difference kinetic energy is used in the numerator of 
(25). Instead of using the full kinetic energy of the benchmark in the denominatcr. 
only three times the energy associated with w is used. This avoids strong biases due 
to the mean flow and makes the percentage errors more representative of the actual 
errors. 

4.2. Resuirs 
Figures 6, 7, and 8 show east-west oriented cross-sections of 11‘ for the 

benchmarks domain 1 and domain 2 of the 2-Way [CF] non-hydrostatic case at 
four times, respectively. These plots are oriented at an angle of about 6” off parallel 
from the mean flow and show a developing forced wave response. At r = 30 and 
60 mm there is still evidence of reflected modes above z = 12 km due the potential 
flow type of initialization. The initial buoyancy was taken as zero which results ?a 
an initial zero first time derivative on all vorticity components and in a relatively 

3ol------ (c) 90 mir. 
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FIG. 7. Same as Fig. 6 except for a nested calculation where the outer domain used the Z-Way CF 
approach. Spatial resolutlons are As = ily = IO km and AZ = 1 km. Frame markers denote position n! the 
inner domain. 
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FIG. 8. Same as in Fig. 7 except inner domain is shown. Resolution here is identical to the 
benchmark model. 
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FIG. 9. Eke(t) error plots for the hydrostatic case stratified flow case. Note the convergence of 
two 2-Way error plots in spite of their differences in initialization as discussed in text. 

the 
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smooth transition from the potential flow regime to the forced wave regime. 
Figure 7 shows that these early reflected modes extend into the inner domain and 
as a result will be a part of the nesting error. Their highly temporal nature supplies 
a good test to the nesting technology. Figure 8 shows the inner domain solution of 
the [CF, PM] case and compares quite accurately with the benchmark case in 
Fig. 6. 

The hydrostatic and non-hydrostatic solutions are almost In istinguishable fxm 
one another for this particular experiment. The solutions for the hydrostatic system 
of equations appears to converge rather quickly in spite of some srgnificant ditferen- 
ces in initial conditions. This was accidentally demonstrated by our having 
initialized a hydrostatic nesting case with the non-hydrostatic initial conditions at 
f = 10 min. As shown in Fig. 9, the hydrostatic [CF, PM] and [PDC, PM] cases 
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FIG. Iii. Stratified flow experiment error plots: (a) and (b) show the E,,! I) errors for the hydrosta:lc 
and r?on-hydrostatic cases, respectively. (c) and (d) show the E,ir) errors fcr the same cases. 
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converged to near identical errors after about 70 min in spite of the fact that the 
[PDC, PM] case was inappropriately initialized. The surprising aspect of this 
result is that convergence occurs long before any steady state is achieved. 

Fig. 10 shows the Eke(t) and E,(r) errors for the non-hydrostatic and hydrostatic 
cases. The overall relative performance of nesting is quite similar between the two 
systems of anelastic equations. The errors of the hydrostatic case begin to increase 
at a slightly greater rate than those of the non-hydrostatic case towards the end of 
these experiments, probably due to the increased sensitivity of the hydrostatic 
system to “noise” generation as compared with the non-hydrostatic system. 
However, for these experiments these differences are still quite small at t = 300 min. 

As in the bubble collapse experiments, the pressure defect correction and basic 
2-Way CF interaction approach give the same results for both the hydrostatic and 
non-hydrostatic models. This means that the post insertion of line-mesh data into 
the coarse mesh is equivalent to a priori matching of the momentum equations 
through the pressure solution. In the case of these type of topography flows, the 
basic [CF, PM] 2-Way interaction approach is considerably less expensive than 
the [PDC, PM] approach. 

5. VIRTUAL NESTING 

The available central memory of a computer can present a serious limitation to 
the size of numerical experiments which can be performed. Furthermore, memory 
use can represent a significant fraction of computer charges for large simulations. 
Finite difference codes such as the present tend to be memory bound rather than 
CPU bound. Virtual nesting is a procedure that does not affect the accuracy of the 
calculation and can significantly reduce the central memory requirements needed to 
perform a numerical experiment requiring a large number of grid points. 

In the current paper we take a single domain and divide it into four equal 
domains, each of which has half the number of grid points in both horizontal 
directions as the original domain. Since the current code requires one full field in 
memory for purposes of solving the elliptic pressure equation, this approach could 
conceivably quarter the memory requirements. However, overhead of the resident 
code plus other working arrays represent a considerable portion of a model’s 
memory requirements so we realize only a fraction of this factor of four. The main 
consideration in virtual nesting is to ensure that these newly created inner 
boundaries, formed by dividing the large single domain into four nested domains, 
in no way affects the results. This virtual nesting approach differs from domain 
decomposition approaches. In the current approach, subdomains are not treated 
independently at each stage of the solution process and no additional iterative 
procedures are required. The elliptic pressure equation represents the most obvious 
problem in this respect. The procedure for dealing with this will now be outlined. 

The present model uses a block iterative scheme to solve for the pressure. In the 
case of no topography, the approach reduces to a direct solver. The first step in 



solving for the pressure is to dimension-reduce both sides of the elliptic equation in 
the vertical direction. This reduces the problem to solving a set of decoupied two- 
dimensional Helmholtz equations where the number of these equations equals the 
number of levels of the model. The important point is that this vertical dimension 
reduction can be performed for each of the xvirtuaily nested domams prior to con- 
sidering solving any of the two-dimensional HelmhoItz equations. The two-dimen- 

elmholtz equations are then combined from each subdomain and solved ES 
here was logically only a single domain. This procedure, pius the storirg 

of some extra boundary condition arrays to appropriately treat the transparent 
boundaries, results in a nesting procedure whose main effect is to reduce the centrsi 
memory requirements of the computer. The remaining calculations performed by 
the model include momentum, advection. and condensation terms. These are a;! 
losal operators that have been made transparent at each virtual boundar>- b-; 
storing the appropriate surfaces of data. 

The performance of virtual nesting for the present model is shown in Fig I I., 
where maxim-tirn central memory requirement is plotted against the virtuai doixin 
size. Curves I and 2 represent the regular code without virtual nesting using I ! 
and 3 : 1 word packing precision on a Cray X-M /48. Curves 3 and 4 represen,: the 
virtually nested case, where a single array has been subdivided into foyer nested 
arrays. Again the results for 2 : 1 and 3 : i word packing precision are shown, ;4s 
an example we see that using 5 Megawords ef memory we can f3. a modei -usrng 
a single array size of 1.X million grid points into the X-ItIP/ withour ~rt_a~ 

0 
0 2 3 4 5 6 

INNER DOMAIN SIZE @&go Worms: 

FIG. 11. Total central computer memory versus array size. The mner array size is for either a si;g!e 
domam ((curies 1 and 2) or for the virtually nested case (curves 3 and 41. Curves 1 ard 3 are for the 2 : 1 
and curves 2 and 1 for the 3 : i word packing precision used m the central memory inputioutput buKers 
OF the model. The case treated here is for no topography and Kit:1 potential temperature ES the “aiy 
thermodynamic field variable. 
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nesting at a precision of 3 : 1. However, with this current virtual nesting we can lit 
a model using a single virtual array size of 4.2 million grid points. Or possibly more 
important, we can lit the 1.8 million grid point job into a reduced memory of 
2.75Megawords and save considerable computer memory charges. The overhead for 
performing this nesting procedure is less than a 4% increase in CPU when con- 
sidering array sizes larger than about one million grid points. This additional CPU 
charge is typically more than offset by a reduction in computer memory charges. 

6. CONCLUSIONS 

Two types of experimental frameworks were used to assess numerical errors 
associated with multiple domain or grid nesting methods. Both moist and dry 
bubble collapse experiments were performed in two dimensions as well as stably 
stratified flow over a three-dimensional isolated mountain. Multiple domain simula- 
tions were compared with single domain benchmark cases in which high resolution 
was employed throughout the domain. 

It was found that identical results were obtained through using either the conven- 
tional 2-Way interaction nesting approch or using a pressure defect correction 
approach. It made no difference whether or not one matched the equations through 
the pressure defect correction or whether one matched the solutions by post-inser- 
tion of line mesh data into the coarse mesh. This result is a direct consequence of 
the fact that the line mesh domain must take its lateral boundary conditions from 
the coarse mesh and that there is no method known to the authors by which these 
boundary conditions can be influenced by the fine mesh domain solutions once they 
have been specified. The intercomparisons between the pressure defect correction 
and 2-Way interaction were performed only for equal time steps (no temporal 
refinement). The authors saw no point in taking the PDC approach any further as 
it is cumbersome and costly and as a result it has been dropped from the present 
code. 

It was found that a post mixing of the purely time dependent perturbation com- 
ponents of the thermodynamic fields resulted in a slight improvement in accuracy. 
The inclusion of temporal refinement with similar Courant numbers for each 
domain also resulted in improved accuracy for the bubble collapse experiments. 
Temporal refinement has no noticeable effect on the error level for the three-dimen- 
sional mountain flow case. 

Comparisons between anelastic hydrostatic and anelastic non-hydrostatic 
simulations of air flow over a three-dimensional isolated mountain showed almost 
identical nesting errors for both systems of equations. There was an indication of 
an increase in errors of the hydrostatic over the non-hydrostatic that was very 
slowly developing with time. This was attributed to the increased sensitively to 
“noise” in the hydrostatic system. 

Virtual nesting was tested for the present code and shown to represent a practical 
approach of reducing central memory requirements for numerical experiments that 
use a large number of grid points. 
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APPENDIX A: HYDROSTATIC PRESSURE CALCULATION 

The horizontal equations of motion can be presented as 

(A,2) 

where f.x and fy represent the explicit terms of advection, diffusion, and Coriolis. 
These equations are combined with the anelastic continuity equation (17) to form- 

&r(,i&j + b,,.(& + 6,,(v’??G’3~“*r) + 6J,(,/&T23~~~) 

=6,(p”o)‘+‘/24t-6,(j~)-6,.(.~,~). (A.3) 

Summing (4.3) over vertical columns results in 

which represents the diagnostic column pressure equation which must be satisfied 
in order to satisfy mass continuity. The qk positions for p are grid centered and 
taken as qli = (k - 3/2) dq for k = 1, 2, ~.., JVZ. The pressure at the domain bottom, 
~7~ is defined as j?;, = ( pkL 1 + pk= 2)/2. Similarly, the pressure at the domain top? !I! 
is defined as p;, = ( pk = .h’z + ph. = LVZ-z)/2. The vertical recursion relation for n can be 
inserted into (A.4) to obtain the final elliptic equation. 

The particular form for hydrostatic pressure in the model is taken as 
- 

hqp=yJY - (p/T)‘1 = gp”B” 

where B is buoyancy, This buoyancy is typically small in this system as it contains 
only deviations from an initial horizontal uniform environmental profile. This 
formulation results in similar magnitudes of p in (A.1 ) and (A.21 as in the 
non-hydrostatic anelastic system. 

An expansion of j-4.5) results in 

where 
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Equation (A.6) leads to the identities 

A’Z - I 

c (,i’Ep A,j)=Ap, +E 
k=2 

P;=,,=A,p,+E, 

P;=vb=4,~+%, 

(.4.9? 

(A. 10) 

(A.1 1 j 

where 

A=(a,(l+cc,(l+a,(l+ ~~~a>vZ)))}v~~A~~ (A.12) 

E= {P.rz-z+P.~~z~3(1 +a,“,-,)+P.vz-,(l +u,z-,(l +a,vz-2)) 

+ .‘. +a,(1 +cc?(l +a,(1 + ... +x,,-,)))} ,/??Arl (A.13) 

A,=(l+a,_,(x,az~;(,.,.a,,~zj/2 (A.14) 

E,=B.~~Z-~/~+(~+C(~~Z~-,)C(C(Z~~...~!.L.Z~~)B~ 

+(~3aq...c(.,~z~*jp2+ .‘. +pNz-2]/2 (A.15) 

A,=(cr,+ljP (A.16) 

4, = B1/2. (A.17) 

Substituting (A.9) through (A.ll) into (A.4) results in 

%(AP,) + ~,C~,(~XZ~-~ - -GA6PIX)I 

+ 6,.[h,(Z,q A,pl’ - Z3App,l‘jl 

= -V;,E- S,[h,(Z,\r,E,-‘- Z,E-‘)] - d,.[h,,(Z,E, - Z,z”)] 
NZ-I 

+ WW,~ - Pqmabj ‘+‘,‘2At - 1 [b,($v) + S,,(Jv)] At! 
k=2 

= RHS, 

where Z, = qkiH - 1. 

D=$(Z,A,-ZzAb)/A (A.19) 

d=.4p,, (A.20) 

equation (A.18) reduces to 
-L 

v:d + 2d,[h,~-y] + ~S,.[/Z,~ Dqb- ] = RHS. (A.21) 

(A.18) 
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e?nce 4 is found, pr is calculated using (A.20). The full pressure kid is determined 
using (A.6.). Appropriate boundary conditions for 10 at the domain top and bottom 
are either specified (for the outer domain) or extrapolated from oute: domzins ior 
a nested domain. The implementation of this hydrostatic option into the mo 
no direct affect upon the logic used for nesting. The independence of rhis o$on 
from the nesting allows us to arbitrarily chose domains where /I/! = 1 and /:/, = 3. 
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